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Abstract

Traditional methods of assessing fungal exposure have been confounded by a number of limiting 

variables. The recent utilization of molecular methods such as internal transcribed spacer (ITS) 

sequencing of ribosomal RNA genes has provided improved insight into the diversity of fungal 

bioaerosols in indoor, outdoor and occupational environments. However, ITS analyses may also 

be confounded by a number of methodological limitations. In this study, we have optimized this 

technology for use in occupational or environmental studies. Three commonly used DNA 

extraction methodologies (UltraClean Soil kit, High Pure PCR Template kit, and EluQuik/DNeasy 

kit) were compared in terms of sensitivity and susceptibility to PCR inhibitors in dust for three 

common fungal bioaerosols, Aspergillus versicolor, Rhizopus microsporus and Wallemia sebi. 

Environmental dust samples were then studied using each extraction methodology and results 

were compared to viable culture data. The extraction methods differed in terms of their ability to 

efficiently extract DNA from particular species of fungi (e.g. Aspergillus versicolor). In addition, 

the ability to remove PCR inhibitors from dust samples was most effective using the soil DNA 

extraction kit. The species composition varied greatly between ITS clone libraries generated with 

the different DNA extraction kits. However, compared to viable culture data, ITS clone libraries 

included additional fungal species that are incapable of growth on solid culture medium. 

Collectively, our data indicated that DNA extraction methodologies used in ITS sequencing 

studies of occupational or environmental dust samples can greatly influence the fungal species that 

are detected.

Introduction

Fungal spores, hyphae and fragments are ubiquitous bioaerosols in indoor, outdoor, and 

occupational environments.1 Personal exposure to fungal bioaerosols may cause or 

exacerbate a wide variety of diseases including hypersensitivity pneumonitis, allergic 

rhinitis, and asthma as well as a variety of mycotic disorders.2,3 Traditional methods of 

evaluating fungal bioaerosol exposure have included viable culture methods or non-viable 

spore counts. Both of these analytical methods rely on trained microbiologists to identify 

unique morphological phenotypes of fungal colonies or dispersive structures such as 
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conidia. Although these methods have aided in the initial characterization of fungal diversity 

associated with indoor and outdoor environments,4,5 there are several well addressed 

limitations associated with these methods of assessment. Viable culture methods favor 

fecund species that can outgrow slow-growing species on solid culture media. Varying 

nutritional and physiological requirements will hinder growth for some species but may be 

optimal for others, depending on the growth media chosen. To control for these limiting 

variables several different media and incubation temperatures may be required to capture the 

diversity of fungi in exposure assessment studies. Additionally, some species are incapable 

of growth on solid nutrient media and cannot be quantified using culture methods. Non-

viable spore counts also have limitations such as the differentiation of amerospores, 

morphologically indiscernible dictyospores, and hyphal fragments.6

Environmental impact

Fungi are ubiquitous microorganisms that can cause or exacerbate respiratory morbidity. 

Accurately assessing the species of fungi present in a given environment (i.e. indoor 

workspace) is of utmost importance in determining the effect that they may (or may not) 

be exerting on inhabitants. Molecular methods of fungal species identification (e.g. 

sequencing of the internal transcribed spacer [ITS] region of rRNA genes) are becoming 

more common in the assessment of fungal burdens in indoor and outdoor environments. 

In this report, we demonstrate that the method of DNA extraction can greatly influence 

the fungal species that are detected by ITS sequencing. This information is crucial to 

researchers interested in utilizing fungal ITS sequencing to assess the fungal burden in 

different environments.

Given the limitations associated with traditional methods of assessment, recent 

developments in genomic sequencing technologies have enabled the differentiation of DNA 

sequence variation to characterize fungal diversity. Although several genomic loci have 

been used as targets for sequence comparison,7–9 the most used locus is the Internal 

Transcribed Spacer (ITS) regions of the nuclear rRNA gene.10 The ITS regions mutate 

rapidly, and are highly variable even between closely related species.11 Given the sequence 

variability and the availability of thousands of annotated fungal sequences in public 

databases, the ITS regions have been recently utilized as targets for assessing fungal 

diversity. Universal fungal primers have been designed for the conserved regions that 

amplify the ITS through polymerase chain reaction (PCR).12 These ITS amplicons can then 

be sequenced and compared to database sequences to identify the diversity of fungi present 

in the environmental sample. This technique has been used to study fungal diversity in 

soil,13–15 frond tissues,16 aerosol samples,17 and dust samples from indoor 

environments.18,19 These studies have identified a number of fungal taxa that have not been 

previously implicated in indoor environments, particularly those derived from the 

basidiomycetes.17,19

Despite the advantages of ribosomal DNA (i.e. the rRNA gene) sequencing, several 

limitations have been identified. Universal fungal primers may be biased toward certain 

fungal taxa20 and the PCR amplification process may favor the amplification of shorter 

rDNA sequences.21 These two factors may cause an overestimation of particular fungal taxa 
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and misrepresent the fungal diversity of a particular sample. Correctly identifying a fungal 

taxon based on sequence similarity also requires well-curated reference sequences. Recent 

estimates place 10–20% of sequences to be incorrectly annotated.22,23 To date, the influence 

of various DNA extraction methods on the identification of fungal diversity has, to our 

knowledge, remained relatively uncharacterized. Given the heterogeneous nature of 

environmental samples (surface dust, air particulate etc), different DNA extraction methods 

may have different efficacies. This aspect was recently observed by Pitkäranta et al., who 

identified that prevalent indoor contaminants such as Penicillium spp. and Aspergillus spp. 

were not present in ITS sequence libraries. However, these genera were prominent in viable 

culture counts derived from the same samples.19 Based on these observations, we 

hypothesize that certain fungal species may be more resistant to DNA extraction. Supporting 

this hypothesis, Haugland et al. demonstrated that smaller conidia yielded less DNA across 

several extraction methods.24 To provide more reproducible and standardized methods for 

future exposure assessments utilizing this methodology, the objective of this study was to 

determine the effects of different DNA extraction techniques on sensitivity, PCR inhibition, 

and resultant fungal species detected in an rDNA amplicon clone library.

Materials and methods

Fungal strains and culture

Fungal species were acquired from the American Type Culture Collection (ATCC) or the 

National Institute for Occupational Safety and Health (NIOSH) culture collection. The 

fungal species studied included the ascomycete, Aspergillus versicolor (ATCC 4448), the 

basidiomycete, Wallemia sebi (NIOSH strain 26-41-01), and the zygomycete, Rhizopus 

microsporus (NIOSH strain 17-59-14). These fungi were selected as representatives of three 

major fungal phyla and also because of their prevalence in indoor and occupational 

environments.5 To compare differences in DNA extraction efficacy between different fungal 

species, the budding yeast Geotrichum candidum (UAMH 7863; a standard control for the 

quantitative PCR-based environmental relative moldiness index) was also included in qPCR 

analyses.25

To generate frozen stocks, spores were harvested from 14-day-old malt extract agar (MEA; 

2% malt extract, 2% dextrose, 0.1% peptone, 1.5% agar) cultures in 0.05% Tween 20 

(PBST). Spore concentrations were measured with a hematcytometer and adjusted to 107 

particles/mL in 15% glycerol. Spores were aliquotted into 200 ml single-use volumes and 

transferred to −80 °C for storage.

Genomic DNA extraction procedures

Three DNA extraction methods were compared in this study: 1) a previously published 

method26 that utilizes a combination of EluQuik (Whatman, Kent, UK) and DNeasy Blood 

and Tissue DNA extraction kits (Qiagen, Valencia, CA, USA); 2) the UltraClean Soil DNA 

isolation kit (MoBio Laboratories Inc., Carlsbad, CA, USA); and, 3) the High Pure PCR 

Template kit (Roche, Basel, Switzerland). For each kit, the cell lysis method employed 

involved a bead milling step, as this mechanical method of lysis has been shown optimal for 

DNA extraction.24 The UltraClean Soil kit alternative method was utilized as described in 
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the manufacturer’s instructions. For the High Pure PCR Template kit, samples were lysed in 

350 mL of the kit’s lysis buffer using a 300 mg glass beads (Sigma-Aldrich, St. Louis, MO, 

USA) and a bead beater (BioSpec Products, Bartlesville, OK, USA) for 15 seconds at high 

speed. The samples were then centrifuged at 21,000 × g for 1 min, and the supernatant was 

mixed with 200 mL of the kit’s binding buffer before application to the filter. The sample 

was then washed and eluted according to the manufacturer’s instructions. In each extraction 

method, the DNA was eluted in 100 mL. The eluate was then reapplied to the filter for a 

final DNA volume of 100 mL. Genomic DNA extractions and rDNA amplification (see 

below) were performed at least in duplicate.

Sample preparation

Aliquotted frozen spore stocks were thawed and serially diluted to 106, 105, 104, 103, 102, 

and 101 spores per mL. Spores from the different species were combined at the ratio of 

1:1:0.25 (A. versicolor: W. sebi: R. microsporus). This ratio was utilized because R. 

microsporus spores typically contain four nuclei,27 whereas A. versicolor and W. sebi are 

uninucleate. These desired spore concentrations were combined and adjusted to a final 

volume of 50 mL. The samples were then processed with each DNA extraction method as 

described above.

Different masses (0 mg, 5 mg, 10 mg, and 20 mg) of ultrafine Arizona test dust (Powder 

Technology Inc., Burnsville, MN, USA) were spiked with 10,000, 10,000, and 2500 A. 

versicolor, W. sebi, and R. microsporus spores, respectively. These samples were then 

processed with each DNA extraction method. The dust spiking experiments were performed 

at least twice. Two floordust samples collected from a water-damaged office building were 

analyzed for fungi by viable culture counts using methods described previously.28 Genomic 

DNA was collected from 15 mg of the same office building dust samples using the three 

methods described above. Fungal rRNA genes were amplified, cloned, and sequenced from 

these dust samples as described below.

PCR, cloning, and sequencing

Several universal fungal primers were tested on various fungal DNA stocks, and two 

universal fungal primers, Fun18Sf19 and ITS412 were selected for the study as PCR products 

were acquired for all fungal isolates tested in the preliminary experiments (data not shown). 

Fungal rDNA sequences were amplified using Platinum Taq DNA polymerase (Invitrogen, 

Carlsbad, CA, USA) according to the methods described previously.19 Six 50 mL replicate 

PCR reactions were run for each sample using 5 mL of DNA template. These replicates 

were then combined and the rDNA amplicons were purified using a PCR purification kit 

(Axygen, Union City, CA, USA) according to the manufacturer’s instructions. Five mL of 

this purified product was then run on a 1% agarose gel containing 0.4 mg/mL ethidium 

bromide and examined for amplicons using a ultraviolet gel doc (Alpha Innotech, Santa 

Clara, CA, USA). DNA extraction and PCR were performed three times to test the 

efficiency of each DNA extraction method at yielding amplifiable DNA. As an extraction-

independent control, a large-scale method was used to extract DNA from mycelia or spores 

of the three standard fungal species.29 The DNA concentrations of these controls was then 

measured with a NanoDrop spectrophotometer (Thermo Sci., Waltham, MA, USA) and 
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mixed in equimolar concentrations. This control DNA was serially diluted and 300 pg (100 

pg per species) was used in each of the six replicate PCR reactions described above.

Fungal rDNA amplicons were cloned into the pDRIVE vector using a PCR cloning kit 

(Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Ligated 

plasmids were then transformed into TOP10 chemically competent Escherichia coli cells 

(Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. The 

transformants were spread onto Luria-Bertani (LB) agar plates containing 100 mg/mL 

ampicillin and a top layer of X-gal. The plates were then incubated overnight at 37 °C.30 

White colonies were selected and cultured in 2 mL LB media containing 100 mg/mL 

ampicillin overnight at 37 °C, and plasmid DNA was isolated with a miniprep kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer’s instructions. At first, the isolated 

plasmid DNA was screened for fungal rDNA inserts with primers Fun18Sf and ITS4. 

However, the percentage of positive transformants was typically high (rv96–99%), so this 

pre-screening step was only used in preliminary experiments.

Plasmid DNA samples were loaded into 96-well plates and sent to the University of Georgia 

Genomics Facility for Sanger sequencing analysis. For testing standard spore stocks, only 

one sequencing primer was used for sequencing that amplified either the ITS1 or ITS2 

region (depending on the orientation of the amplicons in the pDRIVE vector). This approach 

was sufficient for distinguishing between the three standard fungal species. The observed 

sum of clones across three independent DNA extraction experiments for each species was 

tested against an expected number (assuming no bias) with a χ2 test in Microsoft Excel. For 

unknown dust samples, both a forward and reverse sequencing primer was used so that the 

full ITS1-5.8S-ITS2 region was obtained for optimal fungal speciation. Vector sequence 

data were trimmed, and forward and reverse sequences were assembled using Geneious 

Software (Biomatters Ltd, Auckland, New Zealand). Sequence data were then clustered into 

operational taxonomic units (OTUs) with MOTHUR software31 using a 97% similarity 

cutoff. Sequences representative of each OTU were then used in a BLAST search against 

NCBI’s database. The BLAST output file was processed with the MEGAN program32 to 

determine the closest taxonomic relative to each sequence.

Quantitative PCR (qPCR)

Real-time PCR was used to quantify the amount of amplifiable DNA recovered following 

each extraction method. DNA was extracted from serial dilutions (105 to 102) of A. 

versicolor and G. candidum spores using each of the kits/protocols described above. 

Reactions used the Avers2-2 and Gcand2 primer/probe sets described previously (http://

www.epa.gov/nerlcwww/moldtech.htm). The final volume of qPCR reactions was 25 mL 

with the following concentrations of PCR components: 1X TaqMan Fast Universal PCR 

Master Mix (Applied Biosystems), 1 mM forward primer (for Gcand2 assay), 5 mM forward 

primer (for Avers2-2 assay), 1 mM reverse primer, 0.2 mg/mL BSA, 100 nM probe, and 5 

mL of template DNA. The cycling parameters were as follows: 50 °C for 1 minute, 94 °C 

for 20 seconds (initial denaturation), and then 40 cycles of 94 °C for 3 seconds and 60 ° C 

for 30 seconds. Genomic DNA extraction and qPCR analysis of the standard spore/cell 
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stocks was performed three times, with 3 replicates per qPCR reaction. The cycle threshold 

(Ct) values were then compared among genomic DNA extraction methods.

Results

Sensitivity of genomic DNA extraction methods

To test the efficacy of each DNA extraction method, different concentrations of spores were 

processed with each kit. Both homogenous and heterogeneous spore mixtures were 

processed in triplicate (Fig. 1). In general, the High Pure PCR Template kit was the most 

efficient extraction method and yielded amplifiable template from as little as 100 spores of 

each tested species (Fig. 1A). Conversely, the UltraClean soil kit was the least effective, 

requiring at least 10,000 A. versicolor and W. sebi spores for amplification (Fig. 1A). 

However, the UltraClean soil kit performed just as well as the other two kits regarding its 

ability to yield amplifiable DNA from as little as 100 R. microsporus spores (Fig. 1A). 

Notably, both the EluQuik/DNeasy and UltraClean kits failed to yield amplifiable DNA 

when ≤1000 A. versicolor spores were used as template (Fig. 1A). While there appeared to 

be species-specific variability in extraction efficiency, these variations were also applicable 

to the heterogenous spore mixture, with the High Pure PCR Template kit identified as the 

most sensitive, followed by the EluQuik/DNeasy kit, and lastly, the UltraClean soil kit (Fig. 

1B).

To further test the efficacy of the different DNA extraction methods on different fungal 

species, real-time quantitative PCR (qPCR) was performed on DNA extracted from standard 

concentrations of A. versicolor and G. candidum spores. Across three separate experiments, 

DNA extracted from A. versicolor spores with the High Pure PCR Template kit consistently 

yielded lower cycle threshold (Ct) values (compared to the other extraction kits) for input 

spore counts from 103–105 spores (Fig. 1C). In contrast, this trend did not apply to G. 

candidum spores, where DNA extracted with the UltraClean Soil kit appeared to yield the 

lowest Ct values (Fig. 1D). These data suggest that the DNA extraction methods vary in 

their capacity for recovering DNA from various fungal species.

Species biases associated with genomic DNA extraction methods

Mixtures of A. versicolor, W. sebi, and R. microsporus spores containing a 1000:1000:1000 

nuclear ratio were processed for DNA using the three extraction methods described 

previously. Ribosomal RNA genes were then amplified and clone libraries were constructed 

for sequence analysis (~95 clones). Overall, A. versicolor was significantly under-

represented in clone libraries constructed from EluQuik/DNeasy and UltraClean amplicons 

(Table 1). The High Pure PCR Template kit provided the most reproducible clone library 

ratios that were not significantly different (Table 1). Interestingly, the control library 

constructed with rDNA amplicons from PCR reactions containing equimolar concentrations 

of standard DNA from each fungal species also had a bias against A. versicolor (Table 1). 

These data, coupled with the relatively low efficiencies of the EluQuik/DNeasy and 

UltraClean soil kits in yielding a suitable amount of A. versicolor DNA for amplification 

(Fig. 1A), suggest that DNA extraction, amplification, and cloning of rDNA amplicons may 

create a bias against certain fungal species.
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Efficacy of genomic DNA extraction methods at removing PCR inhibitors associated with 
dust

When monitoring occupational environments for fungi, dust samples are often preferred 

over air samples as they provide a longer temporal interval of exposure.33,34 However, dust 

samples may be replete with PCR inhibitors that can confound molecular analyses for 

fungi.35 In order to test the ability of each DNA extraction method to remove these 

inhibitors, a heterogeneous mixture of spores was mixed with different masses of dust and 

then processed with the DNA extraction kits. PCR amplification of DNA isolated using the 

EluQuik/DNeasy method was completely inhibited by as little as 5 mg of the dust, while the 

High Pure PCR Template kit generated amplifiable DNA from samples spiked with 5 mg of 

dust but not from the 10 mg spiked samples (Fig. 2). In contrast, the UltraClean soil kit 

yielded amplifiable DNA from samples spiked with 10 mg of the dust, and although PCR 

inhibition was observable, faint bands were observed even when spiked with 20 mg of dust 

(Fig. 2).

Comparison of genomic DNA extraction methods on building dust samples

The observation of bias in standard spore stocks suggests that similar discrepancies may 

exist when environmental samples are processed. To test the effect that different DNA 

extraction methods may have on the results of fungal ITS sequencing studies, two separate 

floor dust samples (A and B) collected during a field study of occupational health problems 

in a waterdamaged office building, were processed with each DNA extraction method. 

During the first screening, the EluQuik/ DNeasy kit failed to yield amplifiable DNA from 15 

mg of the two (A or B) dust samples (data not shown). In the second screening using the 

EluQuik/DNeasy kit, amplifiable DNA was obtained from 15 mg of dust from sample A, but 

not sample B. To overcome potential PCR inhibitors with the EluQuik/ DNeasy kits, the 

dust sample (in 400 ml lysis/binding buffer mixture) was diluted 1:10 in the same volume of 

lysis/binding buffer before DNA extraction; this dilution enabled the amplification of DNA 

(data not shown).

Clone libraries of dust samples and comparison to viable culture methods

The ITS clone libraries generated from the two dust samples varied greatly among the three 

DNA extraction methods. The EluQuik/DNeasy method yielded a greater diversity of fungi 

than either the UltraClean Soil kit or the High Pure PCR Template kit (Fig. 3; Table 2). For 

sample A, there was very little agreement between the DNA extraction methods regarding 

the predominant fungal OTUs (Fig. 3A). Table 2 illustrates the EluQuik/DNeasy method 

yielded OTUs with ITS sequences very similar to an uncultured member of the Pleosporales 

(100% sequence identity), Cladosporium (99% identity), and Fusarium (99% identity) as the 

predominant genera, whereas the UltraClean soil kit yielded Chaetomium/Thielavia (96% 

identity) as the predominant OTU and the High Pure PCR Template kit yielded Eurotium 

(98% identity) as the predominant OTU (Table 2). However, the UltraClean Soil kit and the 

High Pure PCR Template kit both yielded Eurotium halophilicum (99% identity) as the 

predominant fungal OTU (~77%) in the dust sample B (Fig. 3B, Table 2). The EluQuik/

DNeasy kit yielded only 15.4% E. halophilicum clones in the sample B, and also yielded a 

relatively high number of clones (compared to the other extraction methods) of the genus 
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Pichia (92% identity; Fig. 3B; Table 2). These data demonstrated that the method of DNA 

extraction can greatly influence the outcome of ITS sequencing/cloning studies of fungal 

diversity.

Discussion

The decreasing costs of molecular analyses, coupled with the well-documented limitations 

of viable and non-viable analyses of fungi in environmental samples, has spurred the use of 

DNA analyses for assessing fungal loads in soil, dust, and air samples.14,17–19 Although the 

sensitivities of different methods have been empirically tested, the effects of varying DNA 

extraction protocols remains a caveat in the field of fungal ITS sequencing. In this study, the 

DNA extraction methods tested showed differences in (1) the ability to purify DNA from 

low quantities of template spores for PCR amplification, (2) the efficacy of extraction 

among species (e.g. A. versicolor, W. sebi, R. microsporus, and G. candidum), and (3) the 

susceptibility to PCR inhibitors. When processed with different DNA extraction kits, dust 

samples collected from a water-damaged office building yielded variable ITS clone libraries. 

Particularly, the species composition of the ITS clone library generated with the EluQuik/ 

DNeasy method differed greatly from the composition of the libraries generated with the 

other two kits. These data demonstrate the importance of empirically testing DNA extraction 

methodologies prior to exposure assessment studies. Additionally, the variability observed 

in clone numbers generated with different DNA extraction techniques further demonstrates 

the care that must be taken when interpreting results of the prevalence of various fungal 

species.

The High Pure PCR Template kit was found to be the most sensitive DNA extraction 

method for A. versicolor and W. sebi spores (Fig. 1A). Interestingly, extraction efficiency 

was not only dependent on the methodology, but also on the fungal species from which 

DNA was being extracted. Quantitative PCR data showed that the High Pure PCR Template 

kit was most efficient for A. versicolor spores, but the UltraClean Soil kit was the most 

efficient for G. candidum spores (Fig. 1C). Also, DNA derived from R. microsporus spores 

was extracted in greater concentrations than W. sebi or A. versicolor across all three 

extraction kits (Fig. 1A). This observation may be partially explained by R. microsporus 

containing 4 nuclei per spore (i.e. more DNA to be extracted per spore), compared to W. 

sebi and A. versicolor that are uninucleate.27 However, this difference only partially 

explains this observation as the EluQuik/DNeasy extraction kit required a 100-fold greater 

number of A. versicolor spores (10,000) for ITS amplification, compared to R. microsporus 

(100 spores; Fig. 1A). Another contributing factor may be associated with the spore wall 

composition of these fungi, which are likely to differ substantially. Although the spore wall 

of A. versicolor has not been studied in detail, the spore walls of other Aspergillus species 

are covered with a rodlet layer composed of cystein-rich hydrophobin proteins.36–38 In 

addition to their small size, the rodlet layer confers elasticity that may functionally protect 

the spores during the bead beating steps.39 The High Pure PCR Template kit may be more 

efficient at extracting A. versicolor DNA because it uses a lysis buffer that contains 4 M 

urea, a strong protein denaturant that may assist in degrading the rodlet layer of A. versicolor 

spores. In contrast, the EluQuik lysis buffer contains guanidine thiocyanate that is 

structurally similar to urea, but denatures proteins by a different mechanism.40 The EluQuik 
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lysis buffer is also diluted in binding buffer before the lysis step, which may reduce its 

efficacy. In contrast, the Ultra-Clean Soil kit lysis buffer contains sodium dodecyl sulfate 

(SDS) as the main denaturant, which is not efficient at solubilizing hydrophobic proteins.41 

Other variables, such as bead size, type, and speed/length of bead beating are also likely to 

contribute to DNA extraction efficiency. Currently, we are testing the different lysis 

methods for their efficacy and aim to determine the role of the Aspergillus rodlet in 

protecting spores during DNA extraction.

When heterogeneous spore mixtures were tested, a similar pattern of sensitivity was 

observed between each DNA extraction kit. The High Pure PCR Template kit was the most 

sensitive, followed by the EluQuik/DNeasy kit, and the UltraClean Soil kit (Fig. 1B). 

Amplicons from the 103 treatment were cloned into an E. coli library and sequenced to test 

the biases associated with each kit. The EluQuik/DNeasy and UltraClean kits exhibited a 

bias against A. versicolor, likely caused by the inefficiency of these kits at generating 

amplifiable DNA from A. versicolor (Table 1; Fig. 1A). In contrast, an equal distribution of 

clones among the three species was observed with the High Pure PCR Template kit (Table 

1). The practical implication of these data is clear; environmental samples containing equal 

concentrations of A. versicolor that are analyzed with either the UltraClean Soil kit or the 

EluQuik/DNeasy kit would detect fewer A. versicolor than the other two fungi, even though 

they are present in equal concentrations. Interestingly, an equimolar DNA mixture that was 

included as a control in this experiment exhibited a clone distribution that differed 

significantly from what was expected assuming no bias (Table 1). Although we eliminated 

the possible bias introduced by the different DNA extraction techniques with this control, 

we could not control for possible PCR amplification and cloning biases that may occur 

during this process. Biases are well-documented in bacterial rRNA gene amplification 

studies,42,43 and different universal fungal primers may exhibit amplification biases to 

specific fungal taxa.20 Currently, we are testing PCR amplification and cloning biases that 

may be introduced during ITS amplification and cloning.

Several limitations associated with fungal ITS sequencing of environmental samples have 

been identified. Variation between viable culture data and ITS sequencing data associated 

with Penicillium and Aspergillus genera have been recently reported.17,19 In prior 

studies,14,19 and in the dust sample B of the present study, Penicillium and/or Aspergillus 

species dominated the viable culture counts but were not observed in ITS clone libraries. 

The molecular basis for these observed discrepancies were not explored in the previous 

studies, but data presented in the current study suggest that DNA extraction methodologies, 

and possibly PCR amplification or cloning, may introduce biases that preclude the detection 

of Aspergillus and possibly other amerospore producing fungal genera. Other studies also 

have demonstrated different DNA extraction techniques to be effective at isolating DNA 

from some fungal taxa but ineffective at isolating DNA from Aspergillus species. For 

example, Fredricks et al.44 demonstrated that some DNA extraction methodologies were 

reproducible for Candida albicans, but were ineffective for detecting A. fumigatus. To 

overcome the limitations associated with DNA extraction methods, recent studies have 

shown that several PCR targets within the rDNA and ITS regions reduce biases associated 

with any particular primer pair.18,19 Furthermore, a DNA extraction step is often replicated 
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and combined prior to PCR to reduce sample-to-sample variation.18,19 However, these 

strategies would not overcome the partially recalcitrant nature of amerospores.

The methods used to process environmental samples for molecular analyses may greatly 

influence the interpretation of the diversity of fungal bioaerosols in indoor and other 

occupational environments. In the present study, office building dust samples that were 

processed with different DNA extraction techniques resulted in variable clone libraries 

(Table 2; Fig. 3). As in the preliminary spiking experiments, analysis of environmental 

samples further demonstrated the biases associated with various DNA extraction 

methodologies. In the sample B clone library generated with the EluQuik/DNeasy kit, Pichia 

spp. was identified as a predominant fungal genus (Table 2). However, this genus was not 

present in the other clone libraries generated using the UltraClean Soil or High Pure PCR 

Template kits; the clones in those libraries were predominantly Eurotium halophilicum 

(Table 2). Importantly, the viable culture data for sample B were dominated by Penicillium 

chrysogenum, and neither Pichia spp. or Eurotium halophilicum were identified. These data 

demonstrate the advantages offered by ITS sequencing in fungal exposure assessment: the 

ability to identify fungal species that would often be overlooked using traditional exposure 

assessment methods or even more recently published molecular methods such as the 

Environmental Mold Relativity Index.45 E. halophilicum is a rarely identified xerophilic 

species that grows slowly, and only on specific culture media with low water potential.46–48 

Compared to viable culture data associated with these samples, a number of other fungal 

species including Alternaria, Rhodoturula, Rhizophlyctis, Wallemia, and Umbilicaria were 

identified in the clone libraries but were not detected in viable culture. On the other hand, 

there were several species of fungi identified in the viable cultures that were not observed in 

the ITS clone libraries, namely Trichoderma harzianum (sample A), Stachybotrys chartarum 

(sample B), and Ulocladium chartarum (sample B). These species are readily culturable and 

were present in low quantities in the viable counts, which are likely reasons why they were 

observed in culture but not in the ITS clone libraries. Many of the species identified in the 

ITS clone libraries have specific nutrient and temperature requirements for growth on solid 

culture medium (e.g. E. halophilicum), and as a result, may not be detected when viable 

culture methods are used in exposure assessment studies. Many of these species are also not 

included in the ERMI primer/probe panel (http://www.epa.gov/nerlcwww/moldtech.htm). 

Fungal ITS sequencing does not allow quantification of detected fungal species, and ITS 

sequence similarities of 97% do not necessarily correlate OTUs to the species level. 

However, such sequencing studies do provide a basis for further investigation into the role 

that under-detected species may play in the health effects of residents and workers.

Environmental and occupational dust samples contain PCR inhibitors that may interact with 

DNA or DNA polymerase and hinder molecular analyses.35 In the present study, the ability 

to remove PCR inhibitors was evaluated and the UltraClean Soil kit was most effective at 

yielding amplifiable DNA, even from samples spiked with 10 mg of Arizona test dust (Fig. 

2). The High Pure PCR Template kit was also able to amplify DNA from samples spiked 

with up to 5 mg dust. These results are not surprising, since these two kits contain specific 

steps that aim to eliminate PCR inhibitors. In contrast, the EluQuik/DNeasy method does not 

have a PCR inhibitor removal step and as a result, this kit failed to yield amplifiable DNA 
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from samples spiked with the standard dust (Fig. 2). While Arizona test dust does not 

necessarily represent the dust samples of indoor environments, it is a standardized, 

commercially available dust product that allowed for testing the efficacy of the different 

DNA extraction methods in removing PCR inhibitors. Consistent with the spiked Arizona 

road dust experiment, the EluQuik/DNeasy inconsistently yielded amplifiable DNA from the 

two building dust samples tested in this study. Although the EluQuik/DNeasy method has 

been demonstrated as effective at removing PCR inhibitors from dust compared to more 

crude DNA extraction methods,26 our data indicated that this method is not consistently 

effective at removing PCR inhibitors from environmental dust samples. The level of PCR 

inhibitors in template samples are likely to differ among various indoor and occupational 

environments, and several DNA extraction methods should be tested for optimum DNA 

recovery. In such cases, detection efficiency of such genera as Aspergillus and Penicillium 

may have to be traded for the ability to amplify fungal ITS sequences in the presence of 

strong PCR inhibitors. An alternative strategy would be to test and employ Taq polymerase 

mutants that function better in the presence of PCR inhibitors.49

Conclusions

Although there are methodological limitations that need to be explored further, the results of 

this study demonstrated that the High Pure PCR Template kit is a sensitive and reproducible 

method that can be utilized in fungal diversity studies of indoor and occupational dust. 

Although the other tested methods (UltraClean soil and EluQuik/DNeasy kits) have been 

previously utilized in studies, biases against Aspergillus and potentially other amerospore 

genera must be taken into consideration. However, dust samples that contain high levels of 

PCR inhibitors may require soil DNA extraction kits (such as UltraClean) to overcome 

inhibition at the expense of DNA extraction efficiency. Future studies will utilize the 

efficacy of the High Pure PCR Template kit to identify previously overlooked fungal species 

and study the possible health effects associated with occupational exposure to these fungi.
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Fig. 1. 
Efficiency of the different DNA extraction methods. A. Genomic DNA was isolated from 

different concentrations of spores using three different DNA extraction methods. B. 
Genomic DNA was isolated from different concentrations of a heterogeneous spore mixtures 

(containing a 1:1:0.25 ratio of A. versicolor: W. sebi: R. microsporus spores). ‘M’ = DNA 

marker, with the bands representing 1000 bp, 850 bp, and 650 bp from top to bottom, 

respectively. Lanes marked with ‘0’ represent negative controls in which the input for DNA 

extraction was water containing no spores. Panels A and B are representative images of 

three independent experiments, where dilutions and DNA extractions were performed three 

separate times. C. qPCR standard curves of Aspergillus versicolor genomic DNA isolated 

with each of the three DNA extraction methods. D. qPCR standard curves of Geotrichum 

candidum genomic DNA isolated with each of the three DNA extraction methods. Legend 

displayed in panel D is applicable for panel C. Error bars show +/-standard error across three 

experiments, with three replicates per experiment.
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Fig. 2. 
Removal of PCR inhibitors by the different DNA extraction methods tested. DNA was 

isolated from 10,000 spores spiked with dust. Resultant DNA was used as template to 

amplify rDNA sequences. ‘M’ = DNA marker, with the bands representing 1000 bp, 850 bp, 

and 650 bp from top to bottom, respectively.
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Fig. 3. 
Graphical representation of the diversity of fungi in two floor dust samples (A and B) 

collected from a water-damaged office building, each processed with the different DNA 

extraction kits and also sampled for viable cultures. Different colored blocks represent 

different operational taxonomic units (OTUs). See Table 2 for detailed percentages of each 

OTU.
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Table 1

Number of clones recovered with different DNA extraction kits

No. of clones recovered
a

Extraction Method A.v. W.s. R.m.
χ 

b

EluQuik/DNeasy 6 51 38
<0.01

c

UltraClean Soil 9 29 53
<0.01

c

High Pure PCR 34 41 26 0.19

Standard DNA 20 43 31
0.01

c

a
number of clones with sequence identity to A. versicolor (A.v.), W. sebi (W.s.) or R. microsporus (R.m.). Values are sums across three 

independent experiments.

b
P-value are calculated from a chi-square goodness of fit test.

c
significance p ≤ 0.05.
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Table 2

Percentage of fungal OTUs recovered in two building dust samples (A and B)

Sample A Sample B

Species
a

Elu/Dn
b

Soil
b

HighPure
b

Viable CFU

%
c

Species
a

Elu/Dn
b

Soil
b

HighPure
b

Viable 
CFU 

% 
c

Coniosporium sp. 0 0 2.7 0 Alternaria sp. 1.3 0 2.8 0

Aspergillus sp. 1.3 7.5 2.7 12.5 Aspergillus sp. 2.6 3.7 2.8 0.5

Cephalosporium sp. 2.5 0 0 0 Botryobasidium 1.3 0 0 0

Chaetomium globsum 0 1.3 1.3 0 Candida sp. 1.3 0 0 0

Chaetomium/thielavia 6.3 53.8 21.3 0 Capnobotryella sp 1.3 0 0 0

Cladosporium sp. 21.5 1.3 0 12.5 Chaetomium/Thielavia 1.3 0 0 0

Uncultured Sordariomycetes sp.
(FR682418)

5.1 1.3 24.0 0 Chaetothyriales sp. FGPMC2 2.6 0 0 0

Corynascus verrucosus 0 0 1.3 0 Cladosporium sp. 0 0 0 1

Epicoccum nigrum 2.5 0 0 0 Coniozyma leucospermi 1.3 0 0 0

Eurotium spp 5.1 2.5 28.0 25.2 Cryptococcus hungaricus 5.1 0 0 0

Exophiala nigra 1.3 0 0 0 Davidiella sp. 1.3 1.2 5.6 0

Fusarium oxysporum 7.6 1.3 4.0 12.5 Dothioraceae sp. 0 1.2 0 0

Fusarium sporotrichioides 7.6 0 0 0 Epicoccum nigrum 7.7 3.7 0 0.05

Hypocrea lixii 1.3 0 0 0 Eurotium halophilicum 15.4 76.5 77.8 0

Kabatiella microsticta 0 1.3 0 0 Fusarium graminearum 0 1.2 0 0

Penicillium chrysogenum 2.5 1.3 0 12.5 Fusarium oxysporum 1.3 0 0 0

Penicillium janthinellum 1.3 0.0 0 0 Galactomyces geotrichum 7.7 0 0 0

Uncultured Pleosporales (AM901892) 30.4 2.5 0.0 0 Ganoderma sp. 1.3 0 0 0

Pyrenochaeta lycopersici 2.5 0 0 0 Leptosphaeria sp. 0 1.2 0 0

Uncultured Saccharomycetales
(AM902050)

0 10.0 0 0 Leptosphaerulina sp. 1.3 1.2 0 0

Trichocladium asperum 0 1.3 0 0 Mucor racemosus 1.3 0 0 0

Trichoderma harzianum 0 0 0 12.5 Penicillium chrysogenum 3.8 0 5.6 95.5

Chaetothyriales sp. 0 0 10.7 0 Penicillium decumbens 0 0 1.4 0

Ustilago syntherismae 0 0 1.3 0 Phaeococcomyces nigricans 0 0 1.4 0

Verticillium nigrescens 1.3 0 0 0 Phaeosphaeria sp. I147 6.4 0 0 0

Wallemia sebi 0 7.5 0 0 Phlebia uda 0 0 1.4 0

Chaetothryales sp. 0 1.3 0 0 Phoma sp. 0 1.2 0 0

Rhizophlyctis rosea 0 0 2.7 0 Pichia sp. 15.4 0 0 0

Rhizopus sp. 0 6.3 0 0 Pleosporales sp. 1.3 0 0 0

Yeast - other 0 0 0 12.5 Rhizopus microsporus 0 2.5 0 0

Total no. of clones
d
/CFUse 79 80 75 34,500 Rhodotorula sp. 2.6 0 0 0

Total no. of OTUs 
f 15 7 11 7 Stachybotrys chartarum 0 0 0 1.9

Trapeliopsis glaucolepidea 0 1.2 0 0

Trichosporonales sp. 1.3 0 0 0
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Sample A Sample B

Species
a

Elu/Dn
b

Soil
b

HighPure
b

Viable CFU

%
c

Species
a

Elu/Dn
b

Soil
b

HighPure
b

Viable 
CFU 

% 
c

Ulocladium chartarum 0 0 0 0.5

Umbilicaria kappeni 0 2.5 0 0

Uncultured Ascomycete 9.0 0 1.4 0

Uncultured Basidiomycete 1.3 0 0 0

Uncultured Lasiosphaeriaceae 1.3 0 0 0

Ustilago 0 1.2 0 0

Volutella colletotrichoides 1.3 0 0 0

Wallemia sebi 1.3 1.2 0 0

Total no. of clones 
d
/CFUse 78 81 72 513,160

Total no. of OTUs
f 17 9 6 6

a
closest hit in BLAST analysis of sequenced ITS region.

b
percentage of clones in the library that contained a particular ITS sequence.

c
percentage of colonies recovered for a particular species during viable culture analysis.

d
total number of clones analyzed for a particular DNA extraction method.

e
total number of colony forming units calculated for a given dust sample based on recovery of viable cultures.

f
total number of different operational taxonomic units (OTUs) observed in a clone library or viable culture collect.
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